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ABSTRACT
We address the problem of separating stars from galaxies in future large photometric
surveys. We focus our analysis on simulations of the Dark Energy Survey (DES). In the
first part of the paper, we derive the science requirements on star/galaxy separation,
for measurement of the cosmological parameters with the Gravitational Weak Lensing
and Large Scale Structure probes. These requirements are dictated by the need to
control both the statistical and systematic errors on the cosmological parameters, and
by Point Spread Function calibration. We formulate the requirements in terms of the
completeness and purity provided by a given star/galaxy classifier. In order to achieve
these requirements at faint magnitudes, we propose a new method for star/galaxy
separation in the second part of the paper. We first use Principal Component Analysis
to outline the correlations between the objects parameters and extract from it the
most relevant information. We then use the reduced set of parameters as input to
an Artificial Neural Network. This multi-parameter approach improves upon purely
morphometric classifiers (such as the classifier implemented in SExtractor), especially
at faint magnitudes: it increases the purity by up to 20% for stars and by up to 12%
for galaxies, at i-magnitude fainter than 23.

Key words: Cosmology: observations – Surveys – methods : data analysis, neural
networks, principal component analysis.
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1 INTRODUCTION

What makes a star look different from a galaxy in a deep
image? This seemingly very simple question hides the much
more complicated issue of allocating a size and a scale to
objects observed in the sky, which has concerned observers
and theorists throughout the 20th century. The problem
of classifying stars and galaxies in large scale surveys is
a long-standing one. It has been encountered back in the
early 1990’s (e.g. the APM survey, Maddox et al. 1990)
and poses a major challenge for all recent and large imag-
ing cosmological surveys, including the Dark Energy Sur-
vey (DES) (http://www.darkenergysurvey.org/) and Euclid
(http://sci.esa.int/euclid), which have been designed to un-
cover the nature of dark energy (DE). One common denom-
inator of the wide variety of observational probes constrain-
ing DE is the necessity to select pure samples of galaxies.
More specifically, all the surveys must differentiate galaxies
at cosmological distances from local objects, to obtain pure,
or at least well-understood, samples.

In the area of “precision cosmology”, any source of sys-
tematic error is likely to play a decisive role and needs to
be taken into account in order to refine the standard infla-
tionary Big Bang picture. An example of a scientific ques-
tion for which star/galaxy separation is a potentially critical
systematic is the precision measurement of Primordial Non-
Gaussianities (PNG). These manifest themselves by mak-
ing the bias of a given type of tracers of dark matter halos
strongly scale-dependent. This effect can easily be mimicked
by any local systematic effect adding power at large scales
and correlated with the galaxies. As the stellar distribution
in the Milky Way is across large angular scales, star/galaxy
separation is likely to introduce systematic errors in the mea-
surement of PNG. Another example is the effect of occul-
tation of galaxies by stars of comparable magnitudes. Ross
et al. (2011) showed that this effect constitutes a source of
systematic error in the measurement of angular and photo-
metric distributions of luminous red galaxies. Photometric
effects associated with faint stars could therefore partially
account for the excess power seen in Thomas, Abdalla & La-
hav (2011) for the MegaZ-LRG survey. This paper gives two
other examples, in the case of Weak Lensing (WL) and Large
Scale Structures (LSS) measurements, where star/galaxy
separation is a key systematic, which needs to be taken into
account in order to properly constrain DE.

The outline of this paper is as follows. In section 2,
we present the Dark Energy Survey (DES) and the “DES-
like” simulations which we base our analysis on. In section
3, we study the impact of star/galaxy misclassification on
the measurement of the cosmological parameters, in the case
of the WL and LSS probes, and show how the requirements
on the statistical and systematic errors propagate into new
requirements on the quality of star/galaxy separation. In
section 4 we summarise the current methods for star/galaxy
classification and the motivations for our multi-parameter
approach. The details of the method are presented in section
5. In section 6, we compare our star/galaxy classification
tool to the ones provided by other methods and confront
these results to the science requirements derived in section
3. Finally, we summarise our main conclusions in section 7.

2 THE DARK ENERGY SURVEY

The Dark Energy Survey (DES)1 is an imaging survey of
5000 sq-degrees on southern sky, utilising the four meter
Blanco telescope in Chile. It will provide imaging of 300
million galaxies in five filters (g, r, i, z and Y). Photomet-
ric redshifts will be obtained from the colour information to
produce a three dimensional survey. The main goal of DES
is to determine the Dark Energy equation of state param-
eter, w(z), and other key cosmological parameters to high
precision. DES will measure w(z) using four complemen-
tary techniques in a single survey: counts of Galaxy Clusters
(GC) (with synergy with clusters detected by the Sunyaev-
Zel’dovich effect with the South Pole Telescope), weak gravi-
tational lensing (WL), galaxy power spectra and type Ia Su-
pernovae (SNe). It is expected that the uncertainty on w(z)
will be only a few percent for each probe (see DES collab-
oration 2005, for detailed parameterisations and statistics).
The science requirements of DES drove the construction of a
new camera, DECam, which had its first light in September,
2012, and the survey will start in September, 2013.

As part of the process of testing and validation of
the DES Data Management (DESDM) system (Mohr et al.
2012), a series of detailed simulations have been designed to
serve as a test-bench for the development of the pipelines
and for verifying the scientific reach of the experimental
channels. Each of these iterations of the simulations are
dubbed “Data Challenges” (DC). The simulation starts with
the creation of galaxy catalogs stemming from an N-body
simulation (Busha et al. 2013, in preparation) and detailed
models of the Milky Way galaxy (Rossetto et al. 2011) for
the star component. These are merged and fed to an im-
age simulator which includes atmospheric and instrumental
effects. The resulting images serve as inputs for DESDM
and are processed as the data will be: the code SExtractor
(Bertin & Arnouts 1996) produces a catalogue of more than
300 parameters encapsulating information about each de-
tected object. This process is a joint effort of the Stanford,
Brazil and Barcelona DES teams for the catalog side, and
Fermilab for the image simulation aspect.

The most relevant features of these simulations for our
study are:

• the seeing is introduced as a function of observing time;
• the shapes have been implemented using a Sersic profile

which matches the observed profile;
• the Point Spread Function (PSF) takes into considera-

tion the seeing for that time, the optics and the distortion
as a function of separation from the optical axis.

The results shown in this paper are based on the latest
release of simulated data, DC6, which covers approximately
140 square degrees to the full DES depth, corresponding to
about 10 nights of observations. We select from it the objects
with a model magnitude in the i band brighter than 24, as
they are the ones most likely to be detected with DES. The
average densities are approximately 10.4 galaxies and 4.8
stars per square arc-minute.

1 http://www.darkenergysurvey.org/
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3 SCIENCE REQUIREMENTS ON
STAR/GALAXY SEPARATION

DES will be among the first surveys to combine in a sin-
gle project the observation of the four preferred dark energy
probes, as identified by the Dark Energy Task Force (DETF)
(Albrecht et al. 2006). SNe and Baryonic Acoustic Oscilla-
tion (BAO) constrain the expansion of the Universe as a
whole and are therefore referred to as purely geometric. WL
and GC constrain both the expansion on the Universe and
the growth of Large Scale Structures (LSS) (See Weinberg
et al. 2013 for a complete review).

In order to properly constrain DE, the broad variety of
measures carried out within each probe must meet certain
requirements defined by DES science teams. While there is
no unique way to specify the constraints on dark energy
experiments and probes, the Figure of Merit (FoM), defined
by the DETF, provides a useful metric. If we parameterise
the time evolution of DE by the equation of state w(a) =
wo+(1−a)wa, where a(t) = 1

1+z(t)
is the cosmic scale factor

and z(t) is the redshift of an object emitting at time t, the
FoM is defined as the reciprocal of the area of the error
ellipse enclosing 95% confidence limit in the wo-wa plane.
Larger FoM indicates smaller errors and therefore greater
accuracy on the measurement of the parameters.

In other words, reaching the FoM goals requires to min-
imise the error on wo and wa. Since the total error is the
sum of the statistical error and the systematic error, we can
derive two types of science requirements. More concretely,
the total Mean Square Error (MSE) on a cosmological pa-
rameter pα can be decomposed as

MSE[pα] = σ2[pα] + ∆2[pα] , (1)

where σ2[pα] is the statistical error variance and ∆[pα] is
the parameter shift due to the systematic signals. For each
probe, both of these terms needs to be controlled in order
to minimise the total error.

Star/galaxy misclassification is an interesting effect be-
cause it contributes to both the statistical and systematic
part of the total error, for the WL and LSS probes. This
allows us to translate separately the requirement on the sta-
tistical term (section 3.2) and the requirements on the sys-
tematic term (section 3.3) into requirements on the quality
of the star/galaxy separation. Additional requirements are
specific to each probe, e.g. PSF calibration for WL (section
3.4).

We outline below a formalism to derive these require-
ments.

3.1 Formalism

3.1.1 Completeness, contamination and purity

In the following, we define the parameters used to quantify
the quality of a star/galaxy classifier. For a given class of
objects, X (stars or galaxies), we distinguish the surface
density of well classified objects, NX , and the density of
misclassified objects, MX .

True Galaxies True stars

Objects classified as galaxies NG MS

Objects classified as stars MG NS

The galaxy completeness cg is defined as the ratio of
the number of true galaxies classified as galaxies to the to-
tal number of true galaxies. The stellar contamination fs is
defined as the ratio of stars classified as galaxies to the total
amount of objects classified as galaxies.

cg =
NG

NG +MG
, (2)

fs =
MS

NG +MS
. (3)

The purity pg is defined as 1− fs:

pg =
NG

NG +MS
= 1− fs . (4)

Similar parameters can be defined for a sample of stars: ps,
fg and cs.

We aim to formulate the requirements on the statistical
and systematic errors in terms of constraints on these pa-
rameters. This will allow us to quickly compare the perfor-
mance of the classifiers presented in section 4 and 5 and as-
sess whether they allow us to achieve the goals of the DETF
FoM.

One should note that there are some inefficiencies in
the image pipeline, which are studied in DC6 and which we
do not to deal with in this analysis. Instead, we define the
latter parameters with respect to the truth tables. With real
DES data, our results could be tested e.g. on HST data in
the same fields.

3.1.2 Fisher Information Matrix

The Fisher information matrix describes how the errors on
the angular power spectrum C(l) (of the cosmic shear in the
case of WL, and the density fluctuations of galaxies in the
case of LSS) propagate into the precision on the cosmologi-
cal parameters pα . We employ this formalism (see Tegmark,
Taylor & Heavens 1997, for a review), to quantify the im-
pact of star/galaxy misclassification on each of the terms in
equation 1, i.e. on the statistical and systematic errors on
the cosmological parameters.

The Fisher matrix can be expressed as

Fαβ =
∑
l

∑
(i,j)(m,n)

∂Cij(l)

∂pα
Cov−1[Cij(l), Cmn(l)]

∂Cmn(l)

∂pβ
,

(5)
where the sum is over multipole values and redshift bins
(typically five for WL). Cov[X,Y ] designates the covariance
matrix of X and Y and is given by (Takada & Jain 2004),

Cov[Cij(l), Cmn(l)] =
{Cim(l)Cjn(l) + Cin(l)Cjm(l)}

fsky(2l + 1)∆l
,

(6)
where fsky is the fraction of the sky covered by the survey
(fsky = 0.1212 for DES) and ∆l is the width of the corre-
sponding angular frequency bin.

c© 2012 RAS, MNRAS 000, 1–14



4 M. T. Soumagnac et al.

3.2 Science requirements on the statistical errors

How does the need to control the statistical errors on the
cosmological parameters propagate into a requirement on
the quality of star/galaxy separation? In the following, we
aim to answer this question in the case of the WL and LSS
probes.

3.2.1 WL measurements

Gravitational lensing from distant intervening mass fluctu-
ations causes the shapes of objects to be distorted such that
they appear to be more or less elliptical. While no single ob-
ject is intrinsically round, if the intrinsic shapes of galaxies
are uncorrelated with one another, one can average the ap-
parent shapes of many thousands of such objects to extract
a distortion attributed to WL. The statistical properties of
this observable pattern put a constraint on the power spec-
trum and therefore on the cosmological model and on DE.
For some concise introductions to cosmic shear, see e.g. Re-
fregier (2003), Mellier (1999) and Bartelmann & Schneider
(2001).

How do star/galaxy misclassification affect the WL
shear measurement? The predicted shear angular power
spectrum Cij(l) depends on Neff , the effective density per
unit area of galaxies with reliable shape measurements,

Cij(l) =

∫ rH

0

drr2Wi(r)Wj(r)P (l/r; r) + δij
σ2
e

Neff
(7)

where P (k = l/r) is the 3D matter power spectrum, Wi(r)
and Wj(r) are the radial window functions of the redshift
bins (i, j), r is the comoving distance and rH is the Uni-
verse horizon. The angular power spectrum depends on Neff
through the last term, i.e. the “shot noise” due to σe, the
intrinsic ellipticity noise for the galaxy sample.

In order study the effect of Neff on the statistical error
σ[pα], we compute the Fisher matrix for different values of

Neff . We estimate the Cij(l) and
∂Cgmn(l)

∂pα
terms (see Eq. 5)

using the same code as in Laszlo et al. (2011) and Kirk et al.
(2011). The setup is as follows: we use a model with eight
free parameters: {wo, wa, Ωm, H, σ8, Ωb, ns, bg}; we assume
a Planck prior (Jochen Weller, personal communication);
there are five tomographic bins of roughly equal number
density between z = 0 and 3; the redshift distribution is
a Smail-type distribution (e.g. equation (12) of Amara &
Refregier 2008, with α = 2, β = 1.5, z0 = 0.8

1.412
); we compute

the Cij(l) and
∂Cgmn(l)

∂pα
terms for l ∈ [1, 1024], to avoid the

strongly non linear regime where baryon physics will start
being important; and the photometric redshift error is ∆z =
0.05 ∗ (1 + z).

We then compute the marginalized statistical error on
the cosmological parameters by approximating them with
their Cramer-Rao lower bound

σ[pα] ≈
√

(F−1)αα (8)

We show the results for wo and wa in figure 1 and for the
other free parameters of our model in the Appendix.

Figure 1 shows that larger Neff translates into smaller
statistical errors on wo and wa, i.e. larger FoM, which puts
a constraint on Neff : it has to be higher than a threshold
value Nthresh which can depend on the bandpass considered,

Figure 1. Marginalised statistical errors on the equation of state

parameters wo and wa from the WL probe, for different val-
ues of the density of galaxies with reliable shape measurement

Neff . The errors are marginalised over {Ωm, H, σ8, Ωb, ns, bg}
and computed using the assumptions and setup described in sec-
tion 3.2.1. The red curve shows the errors computed with a non-

informative prior whereas the blue curve is obtained assuming a

Planck prior.

Neff > Nthresh . (9)

Figure 1 also shows that the curve levels off above Nthresh =
10, i.e. the effect of any variation of Neff on the statistical
error decreases at high Neff . In practice, we request the in-
crease of the statistical error due to star/galaxy missclassifi-
cation to be smaller than 2%. This translates into a decrease
of Neff smaller than 4%, i.e.

cg > 96.0% (10)

Star-galaxy misclassification is only one among many other
sources of errors leading true galaxies to be rejected from the
sample of galaxies with reliable shape measurements, (e.g.,
shape measurement errors and photo-Z errors). To insure
that the statistical errors are controled, this condition on cg

should be completed by constraints on the survey parame-
ters controling all the other sources of errors.

3.2.2 LSS measurements

LSS measurements allow us to constrain DE in various ways.
The position of the BAO feature provides a standard ruler
to study the expansion history. The shape of the angular
power spectrum of the galaxy density fluctuation encapsu-
lates precious information about the clustering amplitude
and the growth of structures.

Star/galaxy misclassification affect the power spectrum
measurements and the statistical error on the cosmological
parameters in a similar way as in the WL case. Indeed, we
can write the same equation as Eq. 7 for the angular power
spectrum of the galaxy density fluctuations. The shot noise
term is then given by 1

NG
, where NG is simply the surface

density of detected galaxies. In figure 2, we show the evolu-
tion of the statistical errors on wo and wa with the density
of detected galaxies, computed using the same setup as in
the WL case.

In order to achieve the goals of the the LSS FoM, the
5000 sq-degrees DES survey will need to provide reliable
photo-z and position measurement for about 200 millions
galaxies, i.e. the number of galaxies correctly classified NG
should be higher than 11.1 per sq-arcminute (when using
combined measurements from the r, i and z bandpasses).

c© 2012 RAS, MNRAS 000, 1–14
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Figure 2. Marginalised statistical errors on the equation of state

parameters wo and wa from the LSS probe, for different values of
the density of detected galaxies Ng . The errors are marginalised

over {Ωm, H, σ8, Ωb, ns, bg} and computed using the same as-

sumptions and setup as in the WL case (see section 3.2.1), with
l ∈ [10, 400] (to avoid the non linear regime). The red curve shows

the errors computed with a non-informative prior whereas the

blue curve is obtained assuming a Planck prior.

When doing the latter calculation on the truth table of DC6,
for which the surface density of galaxies is Ng

tot ≈ 12.5, this
threshold on NG translates into the following requirement on
the galaxy completeness provided by the star/galaxy classi-
fier: cg > 88.9%.

Note that this requirement is a necessary but not suf-
ficient condition, as other sources of errors, apart from
star/galaxy misclassification (e.g. photo-z errors), reduce the
number of galaxies which can be used for LSS measurement.

3.3 Science requirements on the systematic errors

We now explore the contribution of star/galaxy misclassi-
fication as a source of systematic error, which need to be
controlled in order for the FoM objectives to be achieved.
Star/galaxy misclassifications generate a residual signal
δCsys(l) in the angular power spectra (of the cosmic shear
in the case of WL, and the density fluctuations of galaxies
in the case of LSS), which propagates into a systematic shift
∆[pα] of the cosmological parameter pα. We use the same
formalism as in Amara & Refregier (2008) (see also Kirk et
al. 2012 and Huterer et al. 2006), to derive ∆[pα],

∆[pα] =∑
β,l,(i,j),(m,n)

(F−1)αβδC
sys
ij (l)Cov−1[Cgalij (l), Cgalmn(l)]

∂Cgalmn(l)

∂pβ
,

(11)

where F−1 is the inverse Fisher matrix. A criterion usually
used to constrain the contribution of the systematic error to
the total MSE, is to define a tolerance on the systematics
such that they do not dominate over statistical error. This
is verified when

|∆[pα]| 6 σ[pα] , (12)

In the following sections, we derive the systematic
parameter shift for 7 cosmological parameters pα =
{wo, wa,Ωm, H, σ8,Ωb, ns} and the galaxy bias bg, in the
case of WL and LSS. This allows us to translate Eq. 12 into
requirements on the quality of the star/galaxy separation.

3.3.1 Requirement from WL measurements

In the case of WL, the systematic error δCsys(l) comes from
the fact that some stars are identified as galaxies, and there-
fore contribute to the measured cosmic shear. We decompose
the measured shear γm into the contribution from the true
galaxies and the contamination from the mixed stars,

γm = (1− fs)γg + fsγs . (13)

where fs = 1− pg, is the stellar contamination rate (defined
in Eq. 3).

The measured two-point shear correlation function is
therefore

< γmγm >= (1− fs)2 < γgγg > +f2
s < γsγs > , (14)

where we assumed that γg and γs are uncorrelated.
In terms of measured angular power spectrum, the lat-

ter equation reads

Cobs(l) = (1− fs)2Cgal(l) + f2
sC

s(l) . (15)

Therefore, the residual systematic signal is given by

δCsys(l) = f2
s (Cgal(l) + Cs(l))− 2fsC

gal(l) . (16)

The requirement stated in Eq. 12 can be reformulated
as a requirement on the stellar contamination rate fs,

P(fs) 6 0 , (17)

where P is a second order polynomial.
The assumptions made to solve Eq. 17 are detailed be-

low. We use the setup detailed in section 3.2.1 to compute
the Fisher matrix and the marginalised statistical errors
σ[pα] on the cosmological parameters. To estimate Cs(l) in
Eq. 16, we assume it is the sum of a “shot noise” term and a
term due to the correlation of stellar shapes across the field
of view,

Cs(l) = Csnoise + Cstile(l) (18)

We measure Cstile(l), the power spectrum of the shapes of
the stars in DC6, using the same code as in Jarvis, Bernstein
& Jain (2004). The “shot noise” term is given by

Csnoise =
σ2
s

Ns
tot

(19)

where Ns
tot = Ns + Ms (see section 3.1.1) is the density

of stars and the ellipticity of stars, σs, is taken as the el-
lipticity of the PSF. To estimate σs, we use the whisker
length. Given Ixx, Iyy and Ixy, the second moment of the
light intensity from an object in x, y coordinates, a mea-
sure of the ellipticity of the light distribution is given by
e = (Ixx − Iyy)(Ixx + Iyy). The whisker length is then de-
fined as w ≈

√
e(Ixx + Iyy) =

√
e · rpsf , where r2psf is given

by (FWHM)/2.35. FWHM designates the full width at
half maximum and is given by FWHM ≈ 0.94 in DES. In
addition, the hardware has been designed with a require-
ment on the whisker length to be lower than a threshold
value of 0.2” in the r, i and z band, which we take as an
estimation of whisk. We get Cs ≈ 1.3187 · 10−8 sr.

In Figure 3, we plot the two terms of the total error
MSE[pα] (see equation 1), i.e. the systematic parameter
shift ∆[pα] due to star/galaxy misclassification, and the sta-
tistical error σ[pα], for different values of the stellar contam-
ination fs and for each of the cosmological parameters of

c© 2012 RAS, MNRAS 000, 1–14
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Figure 3. Marginalised statistical error σ (red line) and systematic parameter shift ∆ (blue curve) from the WL probe, for different
values of the stellar contamination fs allowed by the star/galaxy classifier. Both σ and ∆ are marginalised over {Ωm, H, σ8, Ωb, ns, bg}
and are computed using the setup described in section 3.2.1. The yellow area corresponds to the values of fs for which the requirement
on the systematic errors is achieved, i.e. it does not dominate over the statistical error. This requirement translates into a threshold on

fs, indicated by the green line. Unlike LSS measurements, WL measurements are not sensitive to the galaxy bias bg , which is the reason

why it does not appear above.

our model pα = {wo, wa,Ωm, H, σ8,Ωb, ns, bg}. In particu-
lar, for the equation of state parameters wo and wa, we find
that we require fs 6 0.022. This translates into the follow-
ing requirement on pg = 1− fs, the purity provided by the
star/galaxy classifier: pg > 97.8%.

Within an experiment designed to constrain DE such as
DES, the constraints on the quality of star/galaxy separa-
tion comes from the need to control the errors on wo and wa.
This being said, one should keep in mind that the contami-
nation from stars affects the precision on the measurements
of other cosmological parameters, as shown in figure 3.

3.3.2 Requirement from LSS measurement

Like for the WL probe, achieving the objectives of the LSS
FoM requires the systematic error induced by star/galaxy
misclassification to be smaller than the statistical error on
wo and wa, and we can rewrite Eq. 12 in the case of LSS mea-
surements. The shape of the residual systematic signal due
to star/galaxy misclassification, δCsys, is obtained following
the same methodology as in the WL case, by decomposing
the measured density fluctuation into the contribution from
the true galaxies and the contamination from the stars iden-
tified as galaxies,

δm = (1− fs)δg + fsδs . (20)

Replacing the shear angular power spectrum with the
density fluctuation angular power spectrum in Eq. 16, we get
the same requirement on the stellar contamination rate fs
as in Eq. 17. To estimate Cs(l), we use the same stellar cat-
alogue as used for the DES simulated sky survey produced
by Busha et al. (2013, in preparation). We then calculate
Cs(l) using the approach from Thomas, Abdalla & Lahav
(2010) and an adaptation of the HEALPix code (Gorski et

al. 2005). We estimate the Cij(l) and
∂Cgmn(l)

∂pα
terms using

the same code and setup as for the WL case. Figure 4 shows
the systematic parameter shift induced by the stellar con-
tamination, for each of the cosmological parameters of our
model pα = {wo, wa,Ωm, H, σ8,Ωb, ns, bg}. In particular, for
the equation of state parameters wo and wa, we find that we
require fs 6 0.015. This translates into the following require-
ment on pg = 1−fs, the purity provided by the star/galaxy
classifier: pg > 98.5%. The requirement on star/galaxy sep-
aration in a DE experiment is dictated by the need to accu-
rately measure wo and wa. This being said, figure 4 demon-
strates that these two parameters are not the most sensitive
to the contamination by stars, which we leave for further
analysis.
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Figure 4. Marginalised statistical error σ (red line) and systematic parameter shift ∆ (blue curve) from the LSS probe, for different
values of the stellar contamination fs allowed by the star/galaxy classifier. Both σ and ∆ are marginalised over {Ωm, H, σ8, Ωb, ns, bg}
and are computed using the setup described in section 3.2.1, with l ∈ [10, 400], to avoid the non linear regime. The yellow area corresponds
to the values of fs for which the requirement on the systematic errors is achieved, i.e. it does not dominate over the statistical error. This

requirement translates into a threshold on fs, indicated by the green line. Unlike WL measurements, LSS measurements are sensitive to

the galaxy bias bg , as shown on the last panel.

3.4 Stellar PSF calibration for WL

In this section, we derive two additional requirements on
the quality of the star/galaxy separation, from calibration
constraints specific to the WL probe. The measured shapes
of galaxies include a component due to the PSF of the
combined telescope, atmosphere, and instrument which is
correlated among galaxies. Removing this contribution re-
quires careful measurement of the PSF, which is done us-
ing isolated stars. Therefore, additional requirements on
star/galaxy separation come from PSF calibration for WL.

In order to determine the interpolation pattern of the
PSF, one needs to find enough stars to adequately cover the
area of the CCD chip. Based on preliminary studies of the
DES science verification data, we believe around 200 stars
per DES CCD is enough to adequately cover the area of the
CCD chip and determine the interpolation pattern of the
PSF. From the truth tables, we know that the total number
of stars per CCD is approximately 810 and therefore the
technical constraint on the completeness of the stars samples
is cs > 25%.

In this analysis, we assumed that all non-saturated stars
can be used for PSF estimation. In practice, the latter lower
limit on the completeness could be more stringent because
of detector non-linearities. Indeed, the “blooming” effect,
caused by the voltages induced by the photons reaching the

detector, leads brighter objects to appear larger than faint
objects. This effect can lead to variations of the PSF be-
tween bright and faint stars, and therefore affect the PSF
calibration. This reduces the number of stars available for
PSF calibration.

The upper limit on the contamination in a sample of
stars comes from the fact that galaxies will bias the inferred
PSF, which in turn will bias the galaxy shapes. The target
systematic error level for DES is 0.3%, which naively implies
that this is the maximum fraction of galaxies in the stellar
sample if each one causes an O(1) error in the PSF estimates.
However, galaxies that are erroneously tagged as stars do
look like stars, so the induced systematic errors are more like
O(0.1). This means that we can tolerate a contamination of
about 3%, which translates into a requirement on the purity:
ps > 97%.

3.5 Summary of the science requirements
star/galaxy separation

The requirements on the quality of the star/galaxy separa-
tion derived in this section are summarised in table 1.

A dedicated sample of stars is only needed when cal-
ibrating the PSF. Therefore, the two requirements on the
samples of stars are only required for WL science. As far
as samples of galaxies are concerned, LSS science requires
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Table 1. Summary of the science requirements on the quality of

star/galaxy separation.

requirement from LSS from WL

pg > 98.5% (requirement > 97.8% (requirement

on the systematic error) on the systematic error)

ps - > 97.0% (requirement

on the PSF calibration)

cg > 88.9% (requirement > 96.0%(requirement

on the statistical error) on the statistical error)

cs - > 25% (requirement

on the PSF calibration)

purer samples than WL science. This is due to star contam-
ination affecting the corresponding measured “observable”
in different ways. The contribution of misclassified stars to
the measured shear is dominated by the shot noise term (see
Eq. 18), which is approximately scale independent, whereas
they mimic a l-dependent density fluctuation of galaxies and
therefore contribute to the LSS measurement in a more com-
plicated way. On the other hand, WL requires a more com-
plete samples of galaxies. This is because a “usable” object
means something different for LSS and WL. In order to be
usable for LSS measurement, a galaxy needs to be detected
with a reliable photometric redshift but WL also needs the
shape of the galaxy to be measurable.

In the next sections, we will use these requirements to
assess the performance of a new classifier, multi class, and
compare it to other classifiers currently used in galaxy sur-
veys.

4 CURRENT TOOLS FOR STAR-GALAXY
SEPARATION

Different strategies have been adopted to classify stars and
galaxies in large sky surveys. The morphometric approach
(e.g. Kron 1980; Yee 1991; Vasconcellos et al. 2011; Sebok
1979, Valdes 1982) relies on the separation of point sources
(the ones most likely to be stars) from resolved sources (pre-
sumably galaxies). This approach is challenged at the faint
magnitudes reached by the next generation of wide-field sur-
veys, due to the vast number of unresolved galaxies.

Another strategy consists of using training algorithms.
Machine learning distinguishes several types of learning
strategies, Artificial Neural Network (ANN) being one suc-
cessfully implemented example of supervised learning. ANN
has previously been applied to the star/galaxy separation
problem (e.g. Odewahn et al. 1992, Naim 1995, Bertin &
Arnouts 1996). Indeed, star/galaxy separation shares with
many other classification problems the three criteria which
usually make neural computing applications particularly
successful:

• The task is well-defined in that we know precisely what
we want, i.e. classify objects in two distinct classes.
• There is a sufficient amount of data available to train

the net to acquire a useful function based on what it should
have done in these past examples.
• The problem is not of the type for which a rule base

Figure 5. Distribution of the output of all the classifiers pre-
sented in the paper. The two upper histograms show the clas-

sification performed by class star and spread model. The lower

histograms show the classification performed by our new estima-
tor, multi class. On the right one, we incorporate Xspread model
in the input parameters of the ANN. The advantages of plugging

Xspread model into our tool are explained in section 5.3.2. This
allows an increase of the purity for a given completeness, as shown

in figure 9.

could be constructed, and which therefore could more easily
be solved using a symbolic Artificial Intelligence approach.

Other supervised classifiers, such as Support Vectors Ma-
chine (SVM), have been more recently used for the
star/galaxy separation problem, as well as unsupervised
tools such as Hierarchical Bayesian techniques (e.g. Fadely,
Hogg & Willman 2012).

Throughout this section, we will use the following no-
tations to define:

• classification tools - class star; spread model and
multi class
• classification output - Xclass star; Xspread model and

Xmulti class .

As described below (section 4.1), class star and
spread model are two classifiers currently implemented
in SExtractor (Bertin & Arnouts 1996) and in the next
sections we present a new method for star/galaxy separa-
tion called “multi class”, designed to achieve the science
requirements derived in section 3 at the faint magnitudes
reached by DES.

4.1 Current approaches

Both the morphometric and the training approaches are im-
plemented in SExtractor (Bertin & Arnouts 1996), with two
classifiers, class star and spread model.

4.1.1 The training approach - class star

The first classifier to be implemented in SExtractor was
class star. Its performance on our example sub-survey is
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shown in figure 5. It uses a set of features of the objects
as the input space for a built-in previously trained ANN.
These parameters are:

(i) eight isophotal areas, at regular intervals spanning
from the detection threshold to the intensity peak;

(ii) the intensity peak;
(iii) the local value of the seeing.

This specific pre-defined set of inputs, chosen mainly for
historical reasons, is the main weakness of the class star es-
timator. The choice of training the ANN on isophotal areas
(normalised to the local PSF footprint area) makes it sensi-
tive to close pairs of objects (star-star, star-galaxy, galaxy-
galaxy) either blended or de-blended. Since star-star pairs
are common on the bright end of the source population, the
classifier has a tendency to miss bright, compact galaxies.

More generally speaking, given the large amount and di-
versity of information encapsulated in the parameters pro-
vided by SExtractor, this specific choice of inputs has be-
come hard to justify as it is using a very small part of the
available information. The photometry, the shape or the size
of an object should also be useful indicators of whether it is
a star or a galaxy.

Class star has the advantage of making use of several
parameters and combining the information they contain. In
this sense it is a “multi-parameter” estimator. However, it
does not use the most relevant parameters. A more flexible
and sensible choice of the inputs is likely to give much better
results. This is the main motivation for the new approach
tested in this paper.

4.1.2 The morphometric approach - spread model

The classifier implemented in recent development versions
of SExtractor, spread model (Desai et al. 2012, Bertin et al.
in preparation), takes a morphometric approach. It carries
out diverse operations directly on the image pixels with no
use of the object’s parameters generated by SExtractor. The
newest version of spread model acts as a linear discriminant
between the best fitting local PSF model φ and a slightly
“fuzzier” version made from the same PSF model, con-
volved with a circular exponential model with scale length
given by FWHM/16 (FWHM being the Full-Width at Half-
Maximum of the local PSF model). Spread model is normal-
ized to allow for comparison of sources with different PSFs
throughout the field. It is defined as

Xspread model =
φTWx

φTWφ
− GTWx

GTWG
, (21)

where x is the image centred on the source, W is the inverse
of its covariance matrix which is assumed to be diagonal,
φ is the PSF and G is the circular exponential model con-
volved with the PSF. By construction, spread model is close
to zero for point sources (most likely to be stars), positive
for extended sources (most likely to be galaxies) and nega-
tive for detections smaller than the PSF, such as cosmic ray
hits.

The performance of this late version of spread model
on our example sub-survey is shown in figure 5. Although
this morphometric approach is quite efficient, it is not en-
tirely satisfying as it does not make use of any of the 300

SExtractor parameters, which are likely to encapsulate lots
of relevant information for star/galaxy separation.

5 THE MULTI CLASS METHOD

5.1 Motivation and principle

Our goal is to combine the assets of both the morphometric
approach and the training approach. We adopt the multi-
parameter approach allowed by the training method and
focus on making the optimal choice of input parameters.
The steps of the method are as follows:

(1) Optimal choice of input parameters using a PCA;
(2) Training and running an ANN.

5.2 Step 1- optimal choice of input parameters
using Principal Component Analysis

We make a broad pre-selection of all the parameters likely to
be relevant for star/galaxy classification. These parameters
are listed in table 2. They include:

(i) photometry in 5 bands (g,r,i,z and y);
(ii) the size of objects;
(iii) the shape of objects;
(iv) the surface brightness of objects;
(v) qualifiers of the fitting procedure;
(vi) the output of the class star classifier, Xclass star;
(vii) additional analysis-dependent information.

Ideally, we could run an ANN with this full set of rel-
evant inputs. In practice, training the ANN is a non-linear
iterative process, which becomes more time consuming and
less robust as the number of input parameters increases. In
fact, defining an optimal set of input parameters consists of
minimising its size while maximising the amount of relevant
information it contains.

Our initial set of parameter is redundant, as many of the
parameters within each sub-group are dependent variables.
For example, we show in figure 6 the dependencies between
four types of magnitudes parameters measured in a given
band. In order to reveal the redundancies within the data
and compress it, we use a Principal Component Analysis
(PCA). This statistical method, which comes down to diag-
onalising the covariance matrix of the data, allows us to re-
express the pre-selected parameters detailed above in a more
meaningful basis of orthogonal, i.e. uncorrelated variables
called principal components. The first principal component
is chosen to account for most of the data variability and thus
to have the highest possible variance. Then each succeeding
principal component has the highest possible variance under
the constraint of being orthogonal - that is uncorrelated - to
the preceding one.

We run several “well-informed” PCAs on sub-ensembles
of parameters, rather than a “blind” PCA on the full set
of initial parameters. We choose to group in these sub-
ensembles parameters which have the same units (or mea-
sure) and which are linearly dependent on each other (such
as the magnitudes in a given band, as shown in figure 6).
Indeed, when the parameters are linearly dependent, PCA is
successful at finding a new basis of meaningful independent
variables.
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Table 2. DC6 pre-selected parameters, grouped as defined in

section 5.2, by type of information they provide: (i): photometry;
(ii) size; (iii): shape; (iv): surface brightness; (v): qualifiers of the

fitting procedure; (vi): output of the class star classifier; (vii): ad-

ditional analysis-dependent information. It should be noted that
all of these parameters are distance-dependent. The need for K-

correction to the magnitudes is therefore dealt with by including

the photometric redshift in this pre-selected parameters space.

Parameters Description

(i) mag aper in 5 bands Fixed aperture magni-

-tude with 6
different apertures

mag auto in 5 bands Kron-like elliptical

aperture magnitude
mag iso in 5 bands Isophotal magnitude

mag model in 5 bands Magnitude from model-

fitting
mag petro in 5 bands Petrosian-like elliptical

aperture magnitude
mag psf in 5 bands Magnitude from PSF-

fitting

mag spheroid in 5 bands Spheroid total magn-
-itude

from fitting

(ii) kron radius (from the de- Kron apertures

tection image)

(iii) ellipticity (from the de- 1−Bimage/Aimage
tection image)

(iv) isoarea world in 5 bands Isophotal area above

analysis threshold

FWHM world in 5 bands FWHM assuming a
gaussian core

(v) chi2 model in 5 bands Reduced chi-square
of the fit

chi2 psf in 5 bands Reduced chi-square from

PSF-fitting
niter model in 5 bands Number of iterations for

model-fitting

(vi) Xclass star in 5 bands Output from

class star

(vii) nlowdweight iso Number of pixels with low

detection weight over the
isophotal profile

photoZ photometric redshift

Our new set of parameters includes uni-band parame-
ters from the initial set (such as the photometric redshift or
the ellipticity), as well as the principal components from the
PCAs listed below:

• PCA on the five bands of each multi-band parameter;
• PCA on the six fixed-aperture magnitudes in each band;
• PCA on the six other types of magnitudes in

each band (i.e. mag auto, mag iso, mag model, mag petro,
mag spheroid and mag psf).

Figure 7 shows the variances of the principal compo-
nents of these six types of magnitudes in each band as a
function of their index. Each of these PCAs shows that most
of the variance of the data is encapsulated in a reduced num-

Figure 6. Scatter plots for stars (red markers) and galaxies (blue

markers), for four different types of magnitudes in the i band.
The magnitudes are strongly correlated and PCA is therefore

well adapted to re-express them in a new basis of independent

variables.
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Figure 7. Value of the variance of the principal components as a
function of their index for the fives (per-band) PCAs performed
on the six types of magnitudes: mag auto, mag iso, mag model,
mag petro, mag spheroid and mag psf.

ber of principal components. In many cases, using PCA for
data reduction consists of selecting only the principal com-
ponents with the highest variance and approximating the
data by its projection on this smaller set of variables. This
encompasses the assumption that the important information
is represented by the components with the highest variances.
In the case of star/galaxy separation, this assumption is too
simplistic. Indeed, the class of an object is only one possible
source of variance and high variance could also be due to dif-
ferences between objects in a given class. Therefore, when
looking for the most relevant components for star/galaxy
separation, we need another criterion to quantify their apti-
tude to separate between the classes. We calculate the Fisher
discriminant (Fisher 1936) for each of the new parameters,
defined as the inter-class variance over the intra-class vari-
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ance,

Fi =
(XG,i −XS,i)2

σ2
G,i + σ2

S,i

, (22)

where XA,i is the empirical mean value of the ith parameter
for class A and σ2

A,i is its empirical variance. Figure 8 shows
the classification performed by the three parameters with
the highest Fisher discriminant. The fifteen parameters with
the highest Fisher discriminant form our final set of input
parameters for the ANN (as dicussed in section 5.3.1, more
than twenty input parameters make the ANN less robust, so
we limit the basic set to fiftenn parameters, in anticipation
of the other five that will be added in section 5.3.2).

5.3 Step 2 - running an ANN on the optimal
inputs space

Once a set of optimal parameters is defined, the next step
consists of mapping these parameters to the class of the
objects. This mapping is performed by training an ANN.

5.3.1 ANN: principle and advantages

In essence, an ANN is a highly-flexible, fully non-linear fit-
ting algorithm. During the training phase, it receives a set of
input patterns and a given property (in our case the class of
the object), which needs to be fitted to them. The training
consists of several iterations during which a number of free
parameters known as weights are adjusted so as to minimise
the difference between the outputs of the neural network for
each pattern and the desired property. The algorithm then
learns how to link the inputs to the desired property. After
the training phase, the ANN can be used to infer this prop-
erty from a set of input objects for which it is unknown. For
our analysis, we train an ANN to map the set of optimal
input parameters selected in section 5.2 to the class of the
object (star or galaxy) on a sample of objects for which the
answer is known (the training is made on the DC6 simula-
tions for which we know the true class of each object). The
ANN is then used to deduce the class of a distinct set of
objects.

An ANN is made of computing units called neurons, ar-
ranged in several layers and connected by synapses in which
the information flows in a single direction. The complexity
of the network depends on the number of layers and neurons
in each layer. We chose to use the ANNz photometric red-
shift code (Collister & Lahav 2004) , which was originally
designed for photometric redshift measurements, but can be
effectively and straightforwardly applied to our classification
problem. The trade-off between the complexity of the net-
work and its performance has been investigated by Firth et
al. (2003). For the same number of parameters, adding extra
hidden layers is found to give greater gains than widening
existing layers. As the network complexity is increased, the
accuracy eventually converges so that no further improve-
ment is gained by adding additional nodes. We chose a net-
work architecture with an input layer of fifteen parameters
(or twenty, as explained in the next section) and two hidden
layers of twenty nodes, which turns out to be sufficiently
complex for such convergence to be achieved.

Training on real data, as opposed to simulations, is
preferable, yet more challenging. One option would be to
use data from space-based surveys, as in space the PSF is
not affected by the seeing. Data from the Hubble Space Tele-
scope could be used to train our tool for the real DES survey
data.

5.3.2 Plugging other classifiers in the method

Using an ANN brings flexibility to the training approach. It
allows us not only to choose which inputs to use, but also in
what number. In particular, we can take the output of other
classifiers as inputs to our method.

We run a PCA on the five Xclass stars (in the five
bands). Not surprisingly, the first principal component has a
high Fisher discriminant (as shown in figure 8) and is there-
fore included in the 15 input parameters selected in section
5.2. As the the five bands of Xspread model are less clearly
linearly dependent, we choose not to run a PCA on them
and add the five Xspread model to the set of fifteen input
parameters, which amounts to twenty input parameters.

Figure 9 presents the purity level at a given complete-
ness for these two different configurations of our method.
The performance of our method with fifteen input pa-
rameters (orange curve) can be compared to the perfor-
mance when plugging in Xspread model (pink curve). Includ-
ing Xspread model in the inputs allows an increase in the level
of the purity by 2% at faint magnitudes. Running the ANN
on the fifteen preselected parameters (orange curve) already
gives better results than spread model (blue curve) for most
of the magnitude range (except for the very faint magni-
tudes, in the galaxies case). However, the best results are
obtained by combining the two, i.e by running the ANN on
a hybrid input space combining the 15 selected parameters
and Xspread model.

6 CLASSIFICATION RESULTS

We showed that we can optimise our classifier performance
by using a “well-informed” PCA strategy (section 5.2), and
by incorporating Xspread model into the method (section
5.3.2). We now compare our classifier performance to the
one of the other classifiers. We will focus on comparing
multi class to spread model, as the performance of class star
is widely surpassed by both spread model and multi class for
most of the magnitude range (as shown in Figure 9).

For LSS, our new classifier allows us to achieve require-
ments which cannot be fulfilled by spread model. Figure 10
shows that the 98.5% limit on pg (derived in section 3.3.2
and shown in purple on the figure) cannot be reached by
spread model, whereas multi class allows us to reach it up
to magnitudes of 22.9 (at the required 88.9% completeness
level, derived in section 3.2.2).

For WL, multi class allows us to increase the magnitude
limit below which the science requirements are achieved.
Figure 9 shows that this magnitude limit increases from 21.5
to 23.4 for the requirement on the stars purity ps, and from
22.0 to 22.9 for the requirement on the galaxy purity pg.
Figure 10 and figure 11 generalise this to a broad range of
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Figure 8. Distribution of the three parameters with the highest Fisher discriminant, for stars and galaxies as indicated in the figure.

pc class star 1 (left) is the first principal component from a PCA performed on the five bands of Xclass star (see section 5.3.2). The two
other parameters shown, ellipticity (centre) and photoZ (left) have not gone through any PCA.
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Figure 9. Purity level at the required completeness, for the WL probe, as a function of magnitude in the i band. The orange and pink

curves correspond to different versions of our method, whereas the blue and green ones show the performance of the classifiers class star
and spread model. The orange curve is obtained when running the ANN on the 15 parameters selected in section 5.2 and the pink curve,
the final version of multi class, is obtained when adding spread model in five bands to this set of inputs. The dashed horizontal line shows

the science requirement from WL science on pg (97.8%, section 3.3.1) and ps (97.0%, section 3.4). The requirement on pg is achieved
by multi class up to magnitudes of 22.9, whereas spread model only allows us to reach 22.0. The requirement on ps is achieved up to

magnitudes of 23.4 with multi class, versus 21.5 with spread model.

completenesses. In figure 12, we consider the improvement
in the purity of a sample of stars and a sample of galaxies, as
a function of magnitude, for a large range of completenesses.
At faint magnitudes - typically fainter than 23 - multi class
improves the purity achieved by spread model by up to 12%
for galaxies and by up to 20% for stars.

7 CONCLUSIONS

We showed that star/galaxy misclassification contributes to
both the statistical and systematic error on the measure-
ment of cosmological parameters. In particular, it affects
the measurement of the DE equation of state parameters,
wo and wa, which future large photometric surveys such as
DES aim to measure accurately. In the case of WL and LSS
measurements, we translated the DETF FoM requirements
on the statistical and systematic errors and the constraints
from PSF calibration into the corresponding science require-

ments on the quality of star/galaxy separation. We formu-
lated these requirements using two parameters: the purity
and completeness of classified samples of stars and galaxy.

In order to meet these new requirements, we built
an efficient method for star/galaxy classification, called
multi class, which combines a PCA with a learning algo-
rithm. Our multi-parameter approach allows us to make use
of the huge amount of information provided by SExtractor.
In particular, the use of PCA allows us to better understand
the correlations in the data, and to implement this physical
knowledge in the classifier.

In ground-based surveys such as DES, the image qual-
ity is not constant with position and therefore any purely
morphometric method gives limited performance, especially
at faint magnitudes. The flexibility of using an ANN al-
lows us to consider the morphometry as one input pa-
rameters among many others and to integrate the perfor-
mance of other classifiers to our new tool. Our new clas-
sifier, multi class, significantly improves the performance

c© 2012 RAS, MNRAS 000, 1–14
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Figure 10. Level of purity for a sample of galaxies pg , for dif-

ferent magnitudes and values of the completeness. The 98.5%

level requirement from LSS (section 3.3.2) is shown in purple,
and the 97.8% limit required for WL (section 3.3.1) is shown

in black. Spread model does not allow to achieve the LSS re-

quirement, which multi class can reach. Multi class also allows us
to achieve the requirement from WL at fainter magnitudes than

spread model.

Figure 11. Level of purity for a sample of stars ps, for different

magnitudes and values of the completeness. The 97% science re-

quirement (from WL, derived in section 3.4) is shown in black.
Higher purity levels are shown in purple and light purple. Our

new estimator, multi class, allows us to widen the range of both

magnitude and completeness where this requirement is achieved.

Figure 12. Difference of the purity level achieved by multi class

and spread model, pmulti class−pspread model for stars (left) and
galaxies. At faint magnitudes (ranging from 23 to 24), multi class

allows us to increase the level of ps achieved by spread model by

up to 20%, and pg by up to 12%.

of the morphometric classifier implemented in SExtractor
(spread model), which cannot achieve the LSS science re-
quirements on star/galaxy separation. For both the LSS
and WL probes, it allows us to widen the range of both
magnitude and completeness where the derived science re-
quirements are achieved. For magnitudes fainter than 23,
multi class improves the purity achieved by spread model
by up to 12% for galaxies and by up to 20% for stars.

DES will begin survey operations in September, 2013,

and will be running for five years. Therefore, we should be
able to test the results shown in this paper on real data in the
near future. The faint magnitudes reached by this new clas-
sifier constitute an important asset, which should allow to
achieve the science requirements on star/galaxy separation
in the next generation of wide-field photometric surveys.
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APPENDIX A: STATISTICAL ERRORS ON
THE COSMOLOGICAL PARAMETERS {ΩM , H,
σ8, ΩB, NS, BG} FROM WL AND LSS
MEASUREMENTS

In the following, we show the marginalised statistical errors
on {Ωm, H, σ8, Ωb, ns, bg} from the WL probe (Figure A1)
and the LSS probe (Figure A2), for different values of the
density of galaxies with reliable shape measurement Neff
and of the density of detected galaxies NG respectively. The
errors are marginalised and computed using the assumptions
and setup described in section 3.2.1, with l ∈ [1, 1024] in
the WL case and with l ∈ [10, 400] in the LSS case. The

red curve shows the errors computed with a non-informative
prior whereas the blue curve is obtained assuming a Planck
prior.

This paper has been typeset from a TEX/ LATEX file prepared
by the author.
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Figure A1. Marginalised statistical errors on {Ωm, H, σ8, Ωb, ns, bg} from the WL probe.

Figure A2. Marginalised statistical errors on {Ωm, H, σ8, Ωb, ns, bg} from the LSS probe.
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